17th ICSMGE 2009 - Alexandria

SOA-1: Geomaterial Behaviour and Testing

Mayne, Coop, Springman, Huang, and Zornberg (2009)

SOA-1: 17th ICSMGE 2009 - Alexandria

SOA-1: Geomaterial Behaviour & Testing Paul W. Mayne Georgia Tech, Atlanta, GA, USA Matthew Coop • Imperial College, London, UK Sarah Springman ISSMGE • ETH Swiss Federal Institute Tech, Zurich Pres. Pedro Sêco e Pinto An-Bin Huang • National Chiao Tung University, Taiwan and Master Jorge Zornberg Orchestrator University of Texas at Austin, USA

Jorge G. Zornberg

- 20 years in geotechnical engineering
- Associate Professor The University of Texas at Austin, USA
- Expertise: geosynthetics, soil reinforcement, environmental geotechnics, unsaturated soils
- Vice-President of the International Geosynthetics Society (IGS)
- Chair of the International Activities Council (IAC) of Geo-Institute, ASCE

SOA-1: Geomaterial Behaviour & Testing

An-Bin Huang

- 30 years in geotechnical engineering
- Professor National Chiao Tung University, Taiwan
- Expertise: site characterization, in-situ testing, physical modeling, field instrumentation, liquefaction
- Core Committee Member of TC16 -Ground property characterization by in-situ tests
- Member: ISSMGE, TGS, SEAGS, ASCE, TRB

- Sarah M. Springman
 - Active in geotechnical engineering since 1974
 - Professor Eidgenössische Technische Hochschule, Zürich, Switzerland
 - Expertise: Soil Structure Interaction, Geohazards, Modelling
 - Chair of TC2 Physical Modelling in Geotechnics
 - FREng, FICE, CEng, MInstRE, SIA

SOA-1: Geomaterial Behaviour & Testing

Matthew Coop

- 28 years in geotechnical engineering
- Professor, Imperial College, UK
- Expertise: experimental soil mechanics, mechanics of sands, structured soils, weak rocks and transitional soils
- 2003 Géotechnique lecture.
- British Geotechnical Society Prize 1999
- ICE Geotechnical Research Medal 1990
- Telford Prize 2002
- George Stephenson Medal 2005.

OA-1: 17th ICSMGE 2009 - Alexandria

- Paul W. Mayne
 - 33 years in geotechnical engineering
 - Professor Georgia Institute of Technology, Atlanta, USA
 - Expertise: site characterization, soil property evaluation, in-situ testing, foundation systems
 - Chair of TC16 Ground property characterization by in-situ tests
 - Member: ISSMGE, ASCE, ADSC, ASTM, CGS, DFI, MAEC, TRB, USUCGER

SOA-1: Geomaterial Behaviour & Testing SOA-1 is 100 pages Total 76,776 words T49 references + 43 equations S tables + 228 figures, photos, and graphs Define 145 different parameters and symbols Meed 8+ hours for this presentation

SOA-1: 17th ICSMGE 2009 - Alexandria

Six Sections:

- Introduction
- Soil Behaviour
- Physical Modelling
- In-Situ Testing

Geosynthetic-reinforced soil in a centrifuge. (Zornberg 1998)

Cyclic Response and Liquefaction

SOA-1: 17th ICSMGE 2009 - Alexandria

• Soil-Geosynthetic Interfaces

SOA-1 TOPICS: Geomaterial Behaviour & Testing **Experimentation sites** 10.00 E Methods of testing Interpretative framework Test modes 1.00 Sample disturbance Local strain measurements g Small-strain stiffness 0.10 Critical-state soil mechanics Laboratory testing methods **Yield surfaces** Soil behaviour 0.01 0.1 1.0 Particle behaviour P'o/P'cs Influence of fabric Intermediate grading Shaft friction data for field pile tests **Transitional geomaterials** (Coop, 2005 - IS-Lyon) **Rate effects** SOA-1: 17th ICSMGE 2009 - Alexandria

Contact stress measurements under an axisymmetric footing (Springman et al. 2002).

- **Constitutive Modeling**
- **Physical Testing**
- Numerical simulation
- 1-g tests
- Small scale model testing
- Shake tables
- **Dimensional analysis**
- Large scale testing
- Centrifuge modeling
- Mechatronics and robotics
- . Installation devices
- Serviceability limit states
- **Chamber boundary effects**
- Beams and drums
- **Environmental chambers**
- Imaging

SOA-1: 17th ICSMGE 2009 - Alexandria

- Porewater pressure influences
- Susceptibility to liquefaction
- State parameter approach
- **Probabilistic liquefaction** boundary

- In-situ testing
- Direct-push site characterization
- Interpretation of soil parameters
- Soil behavioural type
- Identification of cemented soils
- Geostatic stress state
- Intracorrelative trends
- Preconsolidation stresses
- Effective stress friction angle
- Stiffness of geomaterials
- Initial tangent shear modulus
- Modulus reduction curves
- New and advanced methods
- Twitch testing
- Full flow penetrometers
- Continuous V_s profiling

Schnaid (2009)

"...when you can measure what you are speaking about and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind"

Lord Kelvin (1883)

Geomaterial Parameters and Properties

CONDUCTIVITY

- Hydraulic: k_v, k_h
- Thermal: ke
- Electrical: Ω, ζ
- Chemical: D_f
- Transmissivity, T_m
- Permittivity, P_m

COMPRESSIBILITY

- Recompression index, Cr
- Yield Stress, σ_y' (and YSR)
- Preconsolidation, σ_p' (and OCR)
- Coefficient of Consolidation, cv
- Virgin Compression index, C_c
- Swelling index, C_s

RHEOLOGICAL

- Coef. secondary comp, C_{αε}
- Strain rate, δε/δt
- Age (T)
- Creep rate, α_R
- Time to creep rupture, t_{cr}

STIFFNESS

- Stiffness: G₀ = G_{max}
- Shear Modulus, G' and G_u
- Elastic Modulus, E' and E_u
- Bulk Modulus, K'
- Constrained Modulus, D'
- Tensile Stiffness, K_T
- Poisson's Ratio, v
- Effects of Anisotropy (Gvh/Ghh)
- Nonlinearity (G/G_{max} vs γ_s)

STRENGTH

- Drained and Undrained, τ_{max}
- Peak (s_u, c', φ')
- Post-peak, τ'
- Remolded/Softened/CS, su (rem)
- Residual (cr', φr')
- Cyclic Behavior (τ_{cyc}/σ_{vo}')

 Geosynthetics: tensile strength, pullout resistance, interface shear strength.

Copyright - Mayne (2009)

Test Method/Mode S	= $s_u/\sigma_{vo'NC}$
Self-boring pressuremeter (SBPMT)	0.42
Plane strain compression (PSC)	0.34
Triaxial compression (CK ₀ UC)	0.33
Unconsolidated Undrained (UU) Factor	0.275
Field vane shear test (FV) of 3	0.21
Direct simple shear (DSS)	0.20
Plane strain extension (PSE)	0.19
Triaxial extension (CK₀UE)	0.16
Unconfined compression (UC)	♦ 0.14

10/21/2009

<section-header><section-header><text><text><text><text>

Copyright - Mayne (2009)

SOA-1: 17th ICSMGE 2009

Sample Disturbance Effects (after Tanaka, 2000)						
Sampler	O.D. (mm)	I.D. (mm)	Length (mm)	Wall t (mm)	Piston	
JPN	78	75	1000	1.5	Yes	
Laval	216	208	660	4.0	No	
Shelby	75.3	72	610	1.65	No	
NGI-54	80	54	768	13	Yes	
ELE100	104.4	101	500	1.7	Yes	
Sherbrooke	N/A	350	250	N/A	No	
NGI-95	105.6	95	1000	5.3	Yes	
Split-Barrel	51.1	34.9	600	8.1	No	
Gel Sampler (Huang 2007) Mazier Tube Dames & Moore				NGI Block Sa Gus Sampler Osterberg Sa	mpler mpler	

SOA-1 (2009)

	Excellent	Good to	Poor	Very Poo
OCR	Good	Fair	1001	
1 to 2	< 0.04	0.04 to	0.07 to	> 0.14
		0.07	0.14	
2 to 4	< 0.03	0.03 to	0.05 to	> 0.10

Lunne, et al. (2006, Canadian Geot. Journal)

Geomaterial ¢' from CPTU by NTNU Method Senneset, Sandven, & Janbu (1989) TRR 1235

View of Geotech Site Investigation

View of Construction Operations

Geotechnical Site Characterization Need a Variety of Different Methods and Technologies to Ascertain Soil Parameters

International Geotechnical Test Sites

- Each site required decades of study
- Years worth of laboratory tests
- Many types of field testing
- Considerable amount of funds needed
- Backfigured soil engineering parameters from full-scale load tests
- Not have enough time !
- Conclusion: Need multiple measurements

SOA-1: 17th ICSMGE 2009 - Alexandria

CONVENTIONAL DRILLING DIRECT-PUSH & SAMPLING TECHNOLOGY Lab ↑ Oscilloscope UD Drop Hammer tube Cased **SCPTù** Boreholes **q**_t f_s CHT: FIRM **U**₂ V_s, V_p SAND ¢ t₅₀ V_s SPT: N₆₀ SDMT SOFT p₀ CLAY VST: s_u, S_t \mathbf{p}_1 P₂ PMT: E' t_{flex} Packer: k_{vh} Vs old new

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

